
IllI. 3. Htw Mass Trumfer. Vol. 22, pp 77 r-774 

8 Per@mon Press Lid. 1979 Printed in Grent Bntaio 

SHORTER COMMUNICATIONS 

EXTENSION OF A MODIFIED INTEGRAL METHOD TO BOUNDARY 
CONDITIONS OF PRESCRIBED SURFACE HEAT FLUX 

JAMES SUCEC 
Dept. of Mechanical Engineering, Room 203, Boardman Hall, University of Maine, 

Orono, ME 04473. U.S.A. 

NOXIENCLATURE 

CL% constant pressure specific heat; 
DIM, SIM, double and single integral methods, 

respectively ; 
k, thermal conductivity; 
n, wedge flow parameter; 
Nu, f’r. Re, Nusselt. Prandtl and Reynolds numbers, 

respectively; 
YW surface heat Rux ; 
r. aerodynamic recovery factor; 
L time; 
u,u,,v. local velocity in s direction, free stream and y 

direction, respectively ; 
x. );, space coordinates along and ~r~ndicular to 

surface. respectively. 

Greek symbols 

(1. thermal diffusivity; 
8, error vector; 

;:,,. 
temperature excess above free stream; 
dummy variables; 

6.6,, velocity and thermal boundary-layer thicknesses, 
respectively; 

y, kinematic viscosity. 

Subscripts 
S,SS. free stream and eventual steady state, 

respectively; 
H: wall value ; 
X. y. evaluated at positions s and J>> respectively. 

VOLKOV [If reasoned that the greatest portion of the error 
incurred in the use of low order integral methods, such as 
the Karman-Pohlhausen type which will be referred to as 
the single integral method (SIM), is caused by the need to 
directly differentiate the approximating sequence at a 
domain boundary. To circumvent this difficulty, he sugges- 
ted viewing the usual SIM equation as a relation giving the 
required derivative at the boundary without explicitly 
differentiating the sequence. The parameter function re- 
maining in the approximating sequence is then found by a 
second integration of a general SIM equation. For brevitv. 
it is proposed to refer to Voikov’s overall procedure as the 
double integral method (DIM). In fll where the DIM is 

L4 

applied to some simple boundary-layer flow problems, and 
in [2], where Volkov and Li-Orlov apply it to a transient 
heat conduction problem, it is found that the DIM yields 
very good results, particularly for the derivatives of the 
approximating sequence at the boundary which are needed 
to predict the wall shear stress and the heat flux. 
Parei~theticafIy, it may be mentioned that Bromley [_‘I had 
used the DIM much earlier (1952) in the solution of the 
problem of laminar film condensation on a horizontal tube. 
Bromley not only used the DIM, though without making 
any comments about the appealing and important features 
of his technique or the possibility of generalizing it to other 
problems, but also showed how one could, easily and 

rationally. generate improvements of the original appro- 
ximating sequence from a general SKM equation, a step also 
suggested by Volkov and Li-Orlov in [;?I. More recently, 
Zien, in a series of works [4-61 extols the merits of the 
DIM in boundary-layer llow and heat-transfer problems 
involving suction or blowing. Zien compares his DIM 
results with SfM results and with exact analvtical solutions, 
when available, and finds, generally, that the DIM, in its 
prediction of skin friction coefficients and local Nusselt 
numbers. exhibits good agreemer~t with the exact solutions 
and outperforms the SIM for the same approximating 
sequences. Furthermore, Zien finds that relative simplicity 
of application of the DIM accompanies the rather high 
accuracy achieved because very elementary approximatirlg 
sequences were used. He finds that linear velocity profiles in 
[4] and [S], and a linear temperature profile in [6], 
perform about as well, in the DIM, as do quartic profiles of 
velocity and of temperature. In [7], Zien makes use of one 
aspect of the DIM in the solution to transient heat 
conduction problems. 

The previous works, in line with Volkov’s original idea 
of avoiding direct di~erenti~ttion of the approximating 
sequence at the domain boundary, treat only cases where 
the dependent variables are specified along the boundary 
with their derivatives constituting unknowns of interest and 
importance. The only exception to this is in Zien [7] where 
the boundary heat flux is specified in a conduction 
problem, but the solution procedure is not the DIM, but is 
more properly classified as a two parameter method of 
moments. It is the intent of the present work to give a 
rationale for expecting the DIM to be equally applicable to 
problems where the boundary derivative is a known, given 
qual~tity. and to show the applications of the DIM to some 
representative problems of this type, namely. a simple 
steady state forced convection problem. an aerodynamic 
heating problem. and a transient forced convection pro- 
blem. Also. one of the basic concepts of the DIM is 
extended to evaluation of derivatives within the domain 
itself when they occur in the governing DIM equation, 

Consider steady, laminar, constant property. low speed, 
two dimensional planar, boundary-layer type how for 
which the thermal energy equation has the following form: 

When it is desired to predict the surface heat flux. the Jocai 
Nusselt number is often formed from the solution to (I). 

The usual SIM equation is found either by an integration 
of (I ) over the thermal boundary layer or by making an 
energy balance on the thermal boundary layer yielding, 

(3) 
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If one integrates equation (I) from zero to y and then 
integrates the resulting equation from zero to ii,, there 
results 

Next one avoids direct differentiation of the approximating 
sequence at the boundary by solving for (@‘I?Y), from (3) 
and inserting it into (4) to give the DIM equation. Now, in 
the Karmai~-Pohlhausell SIM. equation (3) represents an 
attempt to make the error or residual vector [the LHS of 
(I ) with the approximating sequences inserted] in function 
space small by requiring that its component in the “1” 
abstract direction be zero by virtue of the inner product (3) 
being set equal to zero. Or. physically, since the error vector 
in the SIM is the energy imbalance per unit volume, (3) 
represents an attempt to minimize this imbalance. The 
DIM equation (4) can be interpreted in much the same way 
except the error vector in function space is now given by 

i&d:--8,; 
x 

once the approximating sequences are inserted on the right 
of (5) with the last term replaced by its equivalent from 
equation (3). Then & is determined by requiring that the 
inner product, R’ I, be zero which is, of course, equation (4). 
Physically, equation (5) represents the energy imbalance of 
a general control volume within the thermal boundary 
layer and, hence, equation (4) is an attempt to minimize the 
energy imbalance of this general, finite in y, control volume. 
Regardless of whether one views equation (4) from the 
standpoint of requiring a particular component of the error 
vector in function space to be zero or from the physical 
standpoint, it seems reasonable to expect it, and the DIM, 
to work even when no unknown derivative appears on the 
boundary, that is, even when @@/i?.~),,, is a given quantity. If 
this is the case, then one does not use equation (3) to solve 
for (Z&?y),,,, but, rather, just inserts the known value of the 
boundary derivative into equation (4) and solves. 

To investigate the accuracy of the DIM in problems 
where the boundary derivative is specified, it was decided to 
apply it to some representative forced conveotion problems 
with specified surface heat flux. 

I. Cofist~~it~u.~~at plate 
Considered first was the simple case of a flat plate with 

constant surface heat Rux. The following Kantorovich 
approximating sequences were used: 

(7) 

Inserting (6) and (7) into (3) and into (4) yields the SIM 
and DIM solutions, respectively. The surface temperature 
from these solutions, as well as the exact value from Kays 
[S], is given as follows with per cent error shown in the 
parentheses. 

Table I. Comparison between SIM, DIM, and exact result 
for Hat plate with constant surface heat flux 

Exact [X] 
2.2075 

SIM DIM 
2.432(10.20/;,) 2.167(1.X2%) 

As can be seen from Table 1, the DIM gives a dramatic 
improvement of results over the SIM even though direct 
differentiation of the approximating sequence is not needed 
in either method for the specified flux boundary condition. 

2. Aerodyctamic hratirle of’a,put plate 

Dealt with next is high speed flow over an insulated Rat 
plate and it is desired to predict the aerodynamic recovery 
factor I’ by both SIM and DIM. Mathematically, the 
problem description becomes. 

The SIM and DIM equations (3) and (4) are modified 
now by the inclusion of the appropriate integrations of the 
last term displayed in (X) and by (?U/?~)W being zero. 
Equation (6) was used as the approximate profile for 
velocity while that for the temperature is as follows: 

(9) 

It is noticed that the velocity derivative at the wall is 
needed in (3) while the velocity derivative within the 
domain is needed in the DIM equation because of the last 
term in (8). The DIM avoids direct differentiation of the 
profile at the boundary by using, for the Rat plate, 

(IO) 

Next, it is proposed to avoid direct dilIerentiation within 
the domain by utilizing (IO) in conjunction with a general 
SIM equation (integrated to )’ instead of ii), namely, 

For the SIM, the C:u/?y and (&‘iy),, were found by 
differentiating equation (6). 

Under the condition of 6, $ J, the recovery factor r was 
found by SIM and DIM and compared to Pohlhausen’s 
results, as reproduced in Schlichting [Y], in Table 2. Per 
cent errors are also shown. 

For the Prandtl number values of 0.7 and 1.0, the 
condition that ci, s 6 was violated by a slight amount. This 
was not considered severe enough to make significant 
difference in r, however. because equation (6) gave 0.942u, 
as the velocity at the edge of the thermal boundary layer for 
N,,, = 0.7 and this was adjudged close enough to the 
correct value of u,, especially since 0 between $ and ii, at 
N,, = 0.7 is so close to zero that the vast bulk of the 
integral is accumulated before ri is reached. In addition, 
Illingworth [IO], using the same profiles for tl and ii, but 
considering that 6, 3 6, arrives at r = 0.907 by the SIM 
rather the value of r = 0.9082 calculated here. The 
difference is too slight to warrant recalculation for these 
two Prandtl numbers. 

Table 2 indicates the decided superiority of the DIM 
over the SIM in this zero surface heat flux problem. 

Table 2. Comparison between SIM, DIM, and exact result 
for aerodynamic heating of flat plate 

0 
r=--2!L 

ug2cp 
Exact 

Pr (from [91) SIM DIM 

0.7 0.X3.5 0.7795 (6.77,;) 0.X6X6 (4.04’ ) .n 
1.0 I .o 0.90X2 (9.27;) I .045X (4.67,, ) 
7.0 2.515 2.225 ( 1 I .54J 2.610 (3.X9*,,) 

10.0 2.965 2.584 (14.75,) 3.021 (1.97;) 
15.0 3.535 3.045 (I 3.93;,3 3.544 (0.2;:,) 
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StagnatIon pomt, n= I 
- [I31 

’ DIM 
+ SIM 
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FIG. I. Comparison of transient wall temperature excess ratios predicted by SIM, DIM, and [12] and 
[13]. 

Transientforced convectionforjat plate and stagnation point 
Considered next was a forced convection problem, with 

steady velocity field and wedge flow free stream velocity, in 
which a fluid is flowing over a body and the initial 
temperature excess is zero throughout when, suddenly, the 
body experiences a step change in surface heat flux from 
zero to q,,. This initiates a transient temperature profile 
within the Howing fluid and it is desired to predict the time 
varying body surface temperature. The governing DIM 
equation can be shown to be, 

The approximating sequences used were as follows: 

a 4Y lY4 

u,(x) 36 3# 
(13) 

(14) 

6, is now a function of both x and time t. The profiles of u 
and 0 were dictated by the choice made by Sucec [I I] for 
easy comparison. Details of the SIM solution to this 
problem are given in [I I]. Considering wedge flows, u, 
= A x”, requiring that d, 6 ii, and defining new variables for 
convenience, namely, K = 9Or/(S - n), R r = [ii,/6,,,]“, and 5 
= u,t/.x. insertion of equations (I 3) and (I 4) into (12) gives 

Equation (I 5) is now solved by the method of characteris- 
tics, as outlined for a similar equation in [I I], to yield, as 
the DIM solution, 

[ 
I _R,]‘4” -n)/3(5-“) 

(5n + 1)“3(5 - n)*j3 

““‘-Rr’W4(l-3n)/3(5-n)do 
X 

(w- 1)“s 
(1’5) 

1 

After performing the numerical integration in (16) and 
normalizing the surface temperature by the steady state 
values contained in Chao and Cheema [ I2] for n = 0, the 
Hat plate, and in Chao and Jeng [13] for II = 1, the 
stagnation point, the ratio O,(s, t)/OWSbeXIL, is plotted in Fig. 
I for the DIM and SIM and also for the more nearly exact 
results of [II] and [ 1.31. For the Hat plate, the DIM yields 
significant improvement over the SIM, while for the 
stagnation point the conclusion is not so clearcut since 
both methods give comparable accuracy. 

CY)NCI.UDINC REhlARKS 

The basic aims of this work are to show why one would 
reasonably expect the DIM to be applicable even to 
problems in which there are no unknown boundary first 
derivatives, to demonstrate the use of the DIM in a 
problem where a deriva’tive within the solution domain 
appears in the DIM equation itself, and to display the 
advantage, in increased accuracy, enjoyed by the DIM over 
the SIM in this type of problem. 

The results of the three calculations performed using the 
DIM in these specified surface Hux problems are extremely 
encouraging. It appears as if the accuracy and simplicity of 
the DIM as noted by Zien [6], in connection with cases of 
unknown first derivatives at domain boundaries, carry 
over, to a smaller degree, to the class of problems where 
these derivatives are known in advance. 

Although not reported herein, the author has also 
applied the DIM to the other type of transient convection 
problem reported in [I I], namely, the step change in 
surface temperature. Increased accuracy of the DIM over 
the SIM and relative insensitivity of DIM results to profile 
shape (even linear ones were used for u and 0) were found 
for these transient problems that parallel the observations 
of Zien [6] for steady state convection. 

It may also be of interest to know that the DIM applied 
to a natural convection heat-transfer problem leads to a 
very weak solution, namely, one for a Huid whose shear 
stress is zero within the domain. This behavior is the 
manifestation of a term, in the DIM error vector E, being 
automatically orthogonal to the “I” vector. The term 
referred to, namely ~(iu/c’y), appears in the momentum 
equation and is readily seen to yield zero when integrated 
between Y = 0 and Y = ii. This occurrence is not a fault of 
the method since this can also be observed for the SIM on 
other problems. The remedy, in both methods, is to increase 
the number of unknown parameter functions from one to 
two or more and appropriately employ additional weight- 
ing functions. 
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ON PREDICTING BOILING BURNOUT FOR HEATERS 
COOLED BY LIQUID JETS* 
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NO%lENCLATURE 

A, area ; 
0, exponent expressing We, dependence of 6; 

D, disc diameter; 

d, jet diameter; 
i?, k.E., rate of energy ; rate of kinetic energy; 

‘I& latent heat of vaporization ; 
4mw peak (or “burnout”) boiling heat llux ; 
r. P rlP, ; 
[If, liquid velocity ; 
UP “cl,” 11’ vapor velocity; maximum vapor velocity; 

YmrJPa~l ,y ; 

We,, “liquid” Weber number, p,u:D/rr. 

Greek symbols 

3. fraction of liquid How directed into spray; 

P. D/h ; 
d. surface area average droplet diameter; 

P/.P,, saturated liquid and vapor densities ; 
fl, surface tension ; 
4. by,,,!~~y) = Ym.JPs~frs[lr. 

INTRODUCTION 

MONDE and Katto [I] recently provided an extremely 
successful correlation of peak heat Hux (q,,,..) data for 
saturated liquid jets impinging on discs. Their configuration 
is shown in Fig. I, They correlated 937; of I50 original and 
previous [2] qmrx data for water and Freon I 13, within 
+3Sy,, of the best line through them. The correlation can 
be written as: 

4 = 0.0745r0 ‘*s/We:3 (I) 

*We are pleased to acknowledge support for this work 
under NSF Cirant ENG77-2502’). 

where 4 is the vapor escape velocity at the peak heat Hux, 
r,,,“,, divided by the jet velocity. u,. Thus $ = q,,,/p,h~gu,. 
The ratio of the saturated liquid and vapor densities is 
designated as r and We, G p,rufDjs. where D is the 
diameter of the heater. 

More recently Katto and Ishii [3] achieved comparable 
success in correlating data for plane jets impinging at a 15” 
angle to a square heater. This time they based WrJ on the 
length of the plate and found: 

f$ = 0.01 64r”-“h7/We~“. (2) 

p,du: 
we,= - c 

FIG. I. Jet and heater configuration with nomenclature. 


